The AIS wavefront sensor An in-situ optical test via localized wavefront curvature sensing **Ryan Miyakawa**¹, Xibin Zhou², Antoine Wojdyla¹, Yudhi Kandel⁴, Michael Goldstein^{2,3}, Dominic Ashworth², Kevin Cummings², Yashesh Shroff³, Greg Denbeaux⁴, Patrick Naulleau¹ - ¹ Center for X-ray Optics, LBNL - ² Sematech - ³ Intel - ⁴ CNSE, University at Albany ## Motivation 1. High NA 2. Space 3. Cost 4. Convenience ### Outline 1. Review of working principle 2. Experimental realization and design considerations 3. Recent results from optical prototype # **Basic idea:** Aberrated optical systems have nonuniform focus signatures over pupil #### No aberrations # **Basic idea:** Aberrated optical systems have nonuniform focus signatures over pupil #### **Aberrated** ### Zernike polynomials have curvature signature ### Zernike polynomials have curvature signature **Z6:** Coma ### **Curvature signature** ## Generate a curvature library | Ν | Aberration | Probe | Δf | |----|-------------|-------|------------------| | 3 | Focus | | [+,-,+, -, -, +] | | 4 | Stig | | [-,-,+, -, -, +] | | 5 | Stig | | [-,-,+, +, -, +] | | 6 | Coma | | [+,-,+, -, +, +] | | 7 | Coma | | [+,+,+,-,+] | | 8 | Spherical (| | [-,+,+, +, -, +] | | 9 | Trifoil | | [+,-,-, -, +] | | 10 | Trifoil | | [+,-,-,+,+] | #### **Curvature library** #### Wavefront #### **Focus shifts** #### **Curvature library** #### **Focus shifts** #### **Wavefront** ### Wavefront sensor outline Step 1: Probe localized regions of the pupil Step 2: Find the plane of best focus for each probe **Step 3**: Convert these focus shifts into an aberration map using **curvature library** $$\Delta f \longrightarrow \frac{1}{2} \frac{1}{2$$ ### Experimental realization and design ### Grating orientation design considerations Curvature probe orientation determined by grating orientation #### Require enough orientations to make reconstruction well-conditioned ^{* 45-}astigmatism has no curvature in x-y directions ### Illumination control #### SEMATECH Berkeley MET Condenser Programmable illumination via pupil scanners #### **Albany MET** Pupil wheel with configurable illumination masks #### Number of probe positions depends on size of Zernike reconstruction basis Minimum # of probe positions: 8 Zernikes: 6 probes 15 Zernikes: **16 probes** ### Illumination control #### * Number of probes is more important that their specific location Albany MET3 pupil wheel ### Focus sensor ### Focus sensor Best focus given by the z value that maximized the contrast of the diode signal modulation ### Optimizing design for smallest errors Hexagonal pinhole array is *simultaneously* compatible with all 3 grating orientations ### Mask design #### Reticle-plane mask #### Wafer-plane stencil mask ### AIS detector noise test ### Optical prototype layout ### Zone plates allow programmable aberrations ### Zone plates allow programmable aberrations ### Zone plate mask layout | REF | | Z4
10 mWaves | Z4
20 mWaves | Z4
100 mWaves | | |------------------|------|------------------|-------------------|----------------------|--------------------| | Z5
20 mW: | | Z5
50 mWaves | | Z7
50 mWaves | Z7
100 mWaves | | REF | | Z6
10 mWaves | Z6
20 mWaves | Z6
100 mWaves | | | | aves | Z9
50 mWaves | | Z10
50 mWaves | | | REF | | Z8
10 mWaves | Z8
20 mWaves |
Z8
100 mWaves | | | | | ZII
50 mWaves | Z12
20 mWaves | Z13
20 mWaves | | | Z14
20 mWaves | | Z14
50 mWaves | Z15
20 mWaves | | ZI-15
50 mWaves | | REF | | | ZI-8
20 mWaves | ZI-8
100 mWaves | ZI-8
200 mWaves | #### Zone plate mask - 144 Zone plates - Programmed with Zernikes Z₄ through Z₁₅ of varying amplitudes - 3 different numerical aperture settings ### Optical prototype parameters NA: **0.2** lambda: 543 nm Aberrations tested: Astigmatism, Coma, Spherical, Z₁₋₈, Trifoil Probe sites: **8**, (12) Grating orientations: 3 + 1 Focus steps: 21 ## Astigmatism (Z₅) #### Input wave **RMS error: \\142** **AIS reconstructed wave** **Difference** ## Coma (Z₇) #### **Input wave** **RMS error: λ/160** **AIS reconstructed wave** Difference ## Spherical (Z₈) #### Input wave **RMS error: λ/100** **AIS reconstructed wave** **Difference** ## Linear combination (Z₄ - Z₈) CXR **RMS error: \\\\30** **AIS reconstructed wave** **Difference** # Trifoil (Z₁₀) #### Input wave RMS error: $\lambda/68$ **AIS reconstructed wave** **Difference** ## Precision * High stability of BF measurements. Accuracy of optical prototype likely limited by quality of optical elements **Probe location** ### Precision better than $\lambda/150$ 212.2 ### AIS wavefront sensor summary - Optical demonstration of $\lambda/30$ wavefront accuracy with better than $\lambda/150$ precision - Successful reconstruction of all primary Zernike polynomials as well as Trifoil - Diode package is built and has demonstrated good noise properties. - First EUV test planned for January in current Albany MET ## Acknowledgements Rick Chao Seno Rekawa Doug Van Camp Farhad Salmassi Mike Dickenson Rene Delano Carl Cork Will Cork lacopo Mochi **Jeff Gamsby** Paul Denham Contact Ryan Miyakawa rhmiyakawa@lbl.gov